Absolutely continuous spectra of relativistic Schrödinger operators with magnetic vector potentials

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wiener - Hopf Operators and Absolutely Continuous Spectra

CONTINUOUS SPECTRA. II BY C. R. PUTNAM Communicated by Maurice Heins, November 1, 1967 1. This paper is a continuation of [4]. It may be recalled that if A is a self-adjoint operator on a Hubert space § with spectral resolution A=zf\dE\, then the set of elements x in § for which ||-Ex#|| is an absolutely continuous function of X is a subspace, &a(A), of § (see, e.g., Halmos [l, p. 104]). The op...

متن کامل

Absolutely Continuous Spectrum of Dirac Operators with Square Integrable Potentials

We show that the absolutely continuous part of the spectral function of the one-dimensional Dirac operator on a half-line with a constant mass term and a real, square-integrable potential is strictly increasing throughout the essential spectrum (−∞,−1] ∪ [1,∞). The proof is based on estimates for the transmission coefficient for the full-line scattering problem with a truncated potential and a ...

متن کامل

Schrödinger Operators with Singular Potentials †

We describe classical and recent results on the spectral theory of Schrödinger and Pauli operators with singular electric and magnetic potentials

متن کامل

Schrödinger operators with oscillating potentials ∗

Schrödinger operators H with oscillating potentials such as cos x are considered. Such potentials are not relatively compact with respect to the free Hamiltonian. But we show that they do not change the essential spectrum. Moreover we derive upper bounds for negative eigenvalue sums of H.

متن کامل

Asymptotics and Gaps in the Spectra of Magnetic Schrödinger Operators

In this paper, we study an L version of the semiclassical approximation of magnetic Schrödinger operators with invariant Morse type potentials on covering spaces of compact manifolds. In particular, we are able to establish the existence of an arbitrary large number of gaps in the spectrum of these operators, in the semiclassical limit as the coupling constant μ goes to zero.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the Japan Academy, Series A, Mathematical Sciences

سال: 1994

ISSN: 0386-2194

DOI: 10.3792/pjaa.70.290